

紫外線レーザー照射下における SrTiO3 の軟X線発光分光

川上修平,瀧川隆博,中島伸夫,仲武昌史^A,圓山裕,手塚泰久^B

広島大学大学院理学研究科、^広島大学放射光科学研究センター、B弘前大学大学院理工学研究科 広島大学

Introduction

チタン酸ストロンチウム SrTiO3

- ABO₃型ペロブスカイト酸化物
- 3*d* 電子をもたない *d*⁰ 系物質
- バンド絶縁体 (3.3 eV)
- 紫外線照射で可視発光 化学量論組成 STO 緑色発光

キャリアドープ STO 青色発光

可視発光現象

バンドギャップエネルギーより小さな可視発光

→ バンドギャップ中状態の存在が考えられる

Purpose

- ❖ UV 照射が及ぼす効果、電子状態の変化を調べる
- **❖** UV 照射下で発光中の *d* ¹ 電子配置をとらえる

Experiment

軟 X 線発光分光 SXES

- 内殻正孔が局在 → 明確な選択則に準拠
- 内殻電子の吸収端に共鳴励起
- → 蛍光成分とラマン成分(非弾性)が混在
- チャージアップを無視 → 絶縁体の測定が可能

dd 励起

- 結晶場励起によるピーク
- 分裂した d 軌道間での遷移
- d⁰ではないことの証拠
- dd 励起に注目し、d 電子の変化を観測

(b) *E*_{in} // [110] 試料

0.7 eV

(a) E_{in} // [100] 試料

Results & Discussion

STO Ti L XAS

- スピン軌道相互作用による L₂, L₃
- 結晶場により分裂した t_{2q}, e_q (10Dq = 2.3 eV)
- SXES の励起エネルギーを決定

5% La-doped STO Ti L SXES

L₃-e_gへの共鳴 450 452 454 456 458 460 Emission Energy [eV]

• *d*¹系の元素置換型 LSTO

拡大

- 蛍光成分 (Lα_{1,2}, Lβ₁) と励起光に依存 するラマン成分
- e_q への共鳴に伴い弾性散乱直下に ddピーク出現
- E_{dd} = 2.7 eV (10Dg に相当)

UV 照射下 STO Ti L SXES

 $E/\Delta E$

- d⁰ 系の STO に UV 照射
 - **→** *dd* ピーク出現
- ピーク位置はキャリアドープ系と同じ
- キャリアドープ系より強度が弱い

UV 照射下 dd ピークの時間変化

- UV 照射の時間経過に伴い dd ピークが出現
- dd 強度は時定数 τ = 47 min. で増加
- その後 dd ピークは UV-off でも存在 → 不可逆

表面構造との関係 T. Takigawa, 24pPSA-10

- UV 照射下 ARPES 測定
- O 2p バンド (B, C) が高結合エネルギー側に 不可逆なシフト[右図]
- UV が STO 表面の再構成を誘起

【先行研究】 D. Kan *et. al.*, Nature Mater. **4**, 816(2005)

- スパッタ 10 分以降は飽和状態
- 可視発光は酸素欠損による伝導性が起因

Conclusion

- ❖ これまで見られなかった UV 照射に対する不可逆な dd ピークを観測
- \diamondsuit SR と UV を同時照射することで表面に損傷が生じる $\Rightarrow d^1$ 電子状態を形成
- ❖ 可視発光現象は dd 励起との関係性がみられない ➡ 発光は結晶自身の内因的な現象

電場印加によるキャリア注入下で XES 測定を行い さらなる STO の物性理解をすすめる